Hall Ticket No:	Question Paper Code: 20MAT103
-----------------	-------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

NUMERICAL METHODS

(Civil Engineering, Electrical & Electronics Engineering and Mechanical Engineering)

Time: 3Hrs

Attempt all the questions. All parts of the question must be answered in one place only.

All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only

								Marks	CO	BL
Q.No		Question	Lucial Live		e of the	oguation	$x^2 + x - 1 = 0$ by	1M	1	2.
2.1	i,	Find first approx	imation t	o the root	t or the	equation				
		Bisection method	a 	nt matrix I	with an	evamnie		1M	1	1
	ii.	Define diagonally	y domina	an ayamn	lo	campic		1M	2	1
	iii.	Define interpolat	tion with	an examp	the follo	owing tabl		1M	2.	2
	iv		ge's polyii	2	4	7				
		<u>x</u>		4	7	10				
	4. 1	У-	0.4019			La Labor		1M	3	1
	٧.	State the expres	ssion for	$\left(\frac{dy}{dx}\right)_{x=x_n}$ us	sing bac	kward diff	erences		2	
*		Write all the sub		whon f	$(x) = e^{x}$	with [14	7.4 with $h = 0.5$	1M	3	2
	vi	Write all the sub	o interval	s when j	(1) - 6	. 2	, , ,]	1M	4	2
	vii.	Find $y(0.1)$ by E	Euler's m	ethod, giv	en that	$t y' = x^2 - 1$	y with condition	tarri wala	d = 10	
		y(0)=1 and $h=$								
								1M	4	
		CL. L. Han annon	d order R	unge-Kutt	a metho	od formula	1	TIAL		
	viii.	State the secon	d order R	unge-Kutt	a metho	od formula		1M	5	
	ix.	State the princip	nle of lea	st squares				1M	5	
		State the principole State the normal state the normal state the normal state of the state of th	ple of lea rmal eq	st squares			e of the form	1M		
	ix. x.	State the principular State the nor $v = a + bx + cx^2$	ple of lea rmal eq	st squares uations t	o fit	the curve	e of the form	1M 1M		miraturi
Q.2(/	ix. x.	State the principole State the normal state the normal state the normal state of the state of th	ple of lea rmal eq	st squares uations t	o fit	the curve	e of the form	1M 1M		miraturi
Q.2(/	ix. x. A) Fin	State the principular State the nor $y = a + bx + cx^2$ d a root of $f(x)$	ple of lea rmal eq	st squares uations t	o fit gula-fal	the curve	e of the form	1M 1M		miraturi
Q.2(/	ix. x. A) Fin	State the principular State the norm $y = a + bx + cx^2$ d a root of $f(x)$ cimal places.	ple of learmal equation e^{x^2} $= x^2 + e^x$	st squares uations t -5 by Re	o fit gula-fal	the curve	e of the form	1M 1M	5 1	epotanii
	ix. x. A) Fin dec	State the principal State the norm $y = a + bx + cx^2$ d a root of $f(x)$ cimal places.	ple of learmal equation $= x^2 + e^x$	st squares tuations to 5 by Re	o fit gula-fal OR olve th	the curve si method ne syster	correct to three	1M 1M	5 1	epotanii
Q.2(A	ix. x. A) Fin dec B) Ap	State the principal State the norm $y = a + bx + cx^2$ discrepance are a root of $f(x)$ discrepance are a second control of the sec	ple of lear rmal equal	st squares uations t -5 by Re od to so $z = -18 \text{ an}$	o fit gula-fal OR olve the old $2x-3$	the curve si method he system $3y + 20z = $	correct to three n of equation	1M 1M 2 10M s 10M	1	eveter.
Q.2(ix. x. A) Fin dec B) Ap	State the principal State the norm $y = a + bx + cx^2$ discrepance are a root of $f(x)$ discrepance are a second control of the sec	ple of lear rmal equal	st squares uations t -5 by Re od to so $z = -18 \text{ an}$	o fit gula-fal OR olve the old $2x-3$	the curve si method he system $3y + 20z = $	correct to three n of equation	1M 1M	1	eveter.
	ix. x. A) Fin dec B) Ap 20	State the principal State the norm $y = a + bx + cx^2$ discreption of $f(x)$ discreptions are selected as $f(x) = a + bx + cx^2$ discreptions are selected as $f(x) = a + bx $	ple of lear rmal equal	st squares uations t -5 by Re od to so $z = -18 \text{ an}$	o fit gula-fal OR olve the old $2x-3$	the curve si method he system $3y + 20z = 1$ the year	correct to three n of equation 25 1925 from the	1M 1M 2 10M s 10M	1	eveter.
Q.2(ix. x. A) Fin dec B) Ap 20	State the principal State the norm $y = a + bx + cx^2$ discrepance are a root of $f(x)$ discrepance are a second control of the sec	ple of lear rmal equal	st squares uations t -5 by Re od to so $z = -18 \text{ an}$	o fit gula-fal OR olve thad $2x-3$ 5 and in 191	the curve si method he system $3y + 20z = 1$ the year $3y + 20z = 1$	correct to three of equation 25 1925 from the	1M 1M 2 10M s 10M	1	eveter.
Q.2(ix. x. A) Fin dec B) Ap 20	State the principal State the norm $y = a + bx + cx^2$ do a root of $f(x)$ do a root	ple of learmal equation in the sequence of th	st squares uations the square -5 by Re od to square $z = -18$ and $z = 9$	o fit gula-fal. OR olve the d $2x-3$ 5 and in	the curve si method he system $3y + 20z = 1$ the year $3y + 20z = 1$	correct to three of equation 25 1925 from the	1M 1M 2 10M s 10M	1	eveter.
Q.2(ix. x. A) Fin dec B) Ap 20	State the principal State the norm $y = a + bx + cx^2$ did a root of $f(x)$ dimal places. The principal state $x + y - 2z = 17$, 32 timate the population of table:	ple of learmal equation in the sequence of th	st squares uations to -5 by Re od to so $z = -18$ and e year 189	gula-fallor OR olve that $2x-3$ and in 191	the curve si method he system $3y + 20z = 1$ the year $3y + 20z = 1$	correct to three of equation 25 1925 from the	1M 1M 2 10M s 10M	1	eveter.
Q.2(ix. x. A) Fin dec B) Ap 20 (A) Est fol	State the principal State the norm $y = a + bx + cx^2$ discrepance of $f(x)$ discrepanc	ple of learmal equation in the sequence of lear representation in the sequence of the sequenc	st squares uations to -5 by Re od to so $z = -18$ and e year 189 1901 66	o fit gula-fal OR olve the d $2x-3$ 5 and in 191 OR	the curve si method he system $3y + 20z = 1$ the year $3y + 20z = 1$ 192 93	correct to three of equation 25 1925 from the 1 1931 101	1M 1M 10M 10M	5 1 1 2	a d
Q.2(ix. x. A) Fin dec B) Ap 20 (A) Est fol	State the principal State the norm $y = a + bx + cx^2$ do a root of $f(x)$ do a root	ple of learmal equation in the sequence of lear representation in the sequence of the sequenc	st squares uations to -5 by Re od to so $z = -18$ and e year 189 1901 66	o fit gula-fal OR olve the d $2x-3$ 5 and in 191 OR Interpo	the curve si method he system $3y + 20z = 1$ the year $1 + 192$ 93 lation form	correct to three of equation 25 1925 from the 1 1931 101	1M 1M 2 10M s 10M	5 1 1 2	4
Q.2(l	ix. x. A) Fin dec B) Ap 20 (A) Est fol	State the principal State the norm $y = a + bx + cx^2$ d a root of $f(x)$ dimal places. The place of the population of the value of $f(x)$ and the value of $f(x)$ and the value of $f(x)$ of the principal state of the principal	ple of learmal equation in the sequence of lear representation in the sequence of the sequenc	st squares uations to -5 by Re od to so $z = -18$ and e year 189 1901 66	o fit gula-fal OR olve the d $2x-3$ 5 and in 191 OR	the curve si method he system $3y + 20z = 1$ the year $3y + 20z = 1$ 192 93	correct to three of equation 25 1925 from the 1 1931 101	1M 1M 10M 10M	5 1 1 2	4

Find the maximum and minimum value of y from the following table -1 f(x)15.75 56 2 -0.2510M 3 3 Q.4(B) Evaluate $\int_{0}^{6} \frac{e^{x}}{1+x} dx$ by with the proper number of sub intervals by using a) Trapezoidal rule. b) Simpson's $\frac{1}{3}$ rule. 3 Solve the initial value problem $\frac{dy}{dx} = x^2 + y^2$, y(0)=1, by Picard's method (Q.5(A) four decimal places. OR 3 Determine y(1.1) and y(1.2) by fourth order Runge-Kutta method, given Q.5(B)that $\frac{dy}{dx} = xy + y^2$, y(1) = 1. Q.6(A) Fit a second degree polynomial $y = a + bx + cx^2$ to the following data 3 5 10M 3 3.5 2 2.5 1.5 25 10 18 13 - OR Using method of least squares, fit a curve of the form $y = ab^x$ for the 10M 3 Q.6(B)following data 5 426 230 324 144 170

Hall Ticket No:	12					Question Paper Code: 20HUM101
Ham Hickel No.				 		

(UGC-AUTONOMOUS)

B. Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

ECONOMICS AND FINANCIAL ACCOUNTING FOR ENGINEERS

(Common to CE, EEE, ECE and CST)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. Define Economics	1M	1	1
	ii. Demonstrate law of supply	1M	1	3
	iii. Outline opportunity cost	1M	2	1
is.	iv Discuss isocost	1M	2	2
	v. Explain market	1M	3	2
	vi Paraphrase the features of perfect competition market	1M	3	2
	vii. Describe accounting	1M	4	2
	viii. Construct proforma of Ledger	1M	4	2.
	ix. Explain debt-equity ratio	1M	5	2.
	x. Summarize capital budgeting techniques	1M	5	2
Q.2(A)	Summarize the problems of scarcity and choice.	10M	1	5
52%	OR	1004	1	3
Q.2(B)	Describe is elasticity of demand? Illustrative factors determine elasticity of demand.	10M	.1,	3
Q.3(A)	Define Cost? Distinguish between long run costand short run cost	10M	2	4
	OR			
Q.3(B)	List out Breakeven point assumptions and importance.	10M	2	4
Q.4(A)	Distinguish between Monopoly and monopolistic.	10M	3	4
	OR			
Q.4(B)	How do you determine price- output under monopoly?	10M	3	5
Q.5(A)	Elucidate accounting concepts and conventions.	10M	4	2
	OR			
Q.5(B)	Prepare Pro-forma of profit & loss account and Balance sheet	10M	4	5
Q.6(A)	Paraphrase different types of ratios	10M	5	2
	OR			
Q.6(B)	Explain NPV & IRR in brief.	10M	5	4
	*** ***			

	ket No: Question Paper Code: 2			
MA	ADANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, MAI	DANAF	ΔΗ	F
	(UGC-AUTONOMOUS)			
B. Fech	Il Year I Semester (R20) Regular & Supplementary End Semester Examination	ıs, Febru	ary - 2	2023
	PROBABILITY AND STATISTICS FOR COMPUTER SCIEN	NCE	•	
Tim	(Common to CSE, CSE (AI), CSE (DS), CSE (CS) and CST) ne: 3Hrs			
2.0		Vlax Mar	ks: 60	
}	Attempt all the questions. All parts of the question must be answered in one pla	ice only.		
	All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B or	nly 		
Q.No	Question	N. 1		
Q.1	i. Let A and B be events such that $p(A) = 0.5$, $p(B) = 0.7$ what must be	Marks	CO	BL
	$p(A \cap B)$ equal for A and B to be independent?	1M	1	1.
	ii. Define a discrete random variable.	101	4	
	iii. Define moment generating function of a Poisson distribution.	1M 1M	1	1
*:	iv Define Normal distribution	1M	2 2	1 1
	v. Define continuous joint density function.	1M	3	1.
	vi Define covariance between two random variables	1M	3	1
	vii. Write a formula for Pearson's coefficient of Skewness	1M	4	1
	viii. What is the relation between regression coefficients and correlation	1M	4	1
	coefficient		ž:	
	ix. Define critical region X. If P=0.5 and the sample size is 250 than the standard arms is	1M	5	1
Q.2(A)	and the sample size is 250 then the standard error is	1M	5	1
Q.2(A)	A computer center has three printers A, B, and C, which print at different speeds. Programs are routed to the first available printer. The probability that a program is routed to printers A, B and C are 0.6, 0.3 and 0.1 respectively. Occasionally a printer will jam and destroy the printout. The	10M	1	3
	probability that printers A, B and C will jam are 0.01, 0.05 and 0.04 respectively. Your program is destroyed when a printer jams. What is the			
	probability that printer A is involved? Printer B involved?			
	of some marker and the end of the OR page and the page an			
æ	A continuous random variable X has the probability density function, $f(x) = \begin{cases} cx(2-x), & \text{if } 0 \le x \le 2\\ 0, & \text{otherwise} \end{cases}$ Where C is a constant.	10M	1	3
Q.2(B)	0, otherwise Whore C is a constant			
	Find (i) C value (ii) P[0.5 < X < 1.5] (iii) mean and (iv) variance.			
	(ii) (iii) mean and (iv) variance.			
Q.3(A)	Let X be a Poisson random variable with parameter λ (or k) =10.	10M	2	7
	Find the (i) $p(X \le 4)$ (ii) $p(X > 3)$ (iii) $p(1 \le X < 4)$	TOIVI	2	2
	(iv) $E(X)$ (v) $Var(X)$			
že.				
Q.3(B)	OR Assume that during seasons of normal rainfall the water level in feet at a	1014	-	•
- 1-1	and an ing seasons of normal rainfall the water level in feet at a	10M	2	3

particular lake follows normal distribution with mean 160 feet and standard deviation 10 feet. During such a season, find the probability that one can observe a water level (i) will exceeds 150 feet (ii) will be between

135 feet and 180 feet (iii) will be less than 140 feet.

		ollowing $\mathfrak k$ ons of X	and Y	ii) V(X) i	and V(Y)			_		ı X	10M	3	3
		, A alla I	X\Y			12	1						
				0	1 2/15	2							
			-1	1/15	3/15	2/15							
			0	2/15	2/15	1/15							
			1	1/15	1/15	2/15							
Q.4(B)	The inter		(V 1	7) in at	0		(,x+,	/)	0	. 0	10M	3	3
Q.4(B)	The joint a) b) c) d)	Find th Find Co Are X	e margir	nal dens idepend	ities for .				> 0, <i>y</i>		10101	J	3
Q.5(A)		the first	four m	oments	of the f	ollowing	distri	bution	n abo	out the	10M	4	3
	mean:	0 1:	1 2	3	4	5	6	7	W1	8		15	
	f		3 2			60	29	8		1			
	Also calc	ulate β_1 a				= 1/=							
Q.5(B)	nek,	e the ran		tion coe	efficient f	OR or the fo	llowir 64	g data	a:	ar sell-	10M	4	3
	Υ	70	68 8	0 70	75 9	0 70	50	60	55	J. Admyl			
Q.6(A)	1000 pei	e an incre	ease in (excise d	uty on to	market miles	A STATE OF THE PERSON NAMED IN	ALC: NAME OF PERSONS ASSOCIATED		SHOULD SET WATER	DISTRIBUTE OF STREET	Marine Land	ACCORDING TO SHARE
	is a sign excise du (ii) A sau standard	vere tea (ificant de	re found drinkers ecrease 900 mer n 1.61 c	to be to in a sar in the constant in the const	ea drinke nple of 1 onsumpt found to t be reas	on ably r	an ind ple. To ea aft a mea regard	est when the an of as a t	in dunether incr 3.4 c	ity, 800 er there ease in m with		5	3
	is a sign excise du (ii) A san standard sample f	vere tea of ificant descriptions of 9 second deviations of 1 second	e found drinkers ecrease 900 mer n 1.61 c ge popu	to be to in a sar in the c mbers is m. Can i lation w	ea drinke nple of 1 onsumpt found to to be reas with mean	rs. After 200 peo ion of to o have onably r 3.25 cm	an incople. The after a mea regard	erease est wheer the an of as a t	in du nethe incr 3.4 c ruly i	er there ease in m with random			3
Q.6(B)	is a sign excise du (ii) A sau standard sample f A rando 83, 95, populati	vere tead ificant de uty? mple of S deviatio	e found drinkers ecrease 900 mer n 1.61 c ge popu e of 10 b	to be to in a sar in the constant in the const	ea drinkelenple of 1 onsumpt s found to the rease with mean the following the following the facts at at 5% s ean?	o have onably r 3.25 cm	an incople. The a mean regard in. 2: 70, the ce level	est when of as a t	in dunether incr 3.4 coruly incr 110, inptions of coru	er there ease in m with random	10M	5	2

Hall Ticket No: Question Paper Code: 20CE10

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

FUNDAMENTALS OF ENGINEERING MECHANICS

(Civil Engineering)

Time: 3Hrs

Max Marks: 60

Attempt all the questions. All parts of the question must be answered in one place only.

All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only

Q.No		Question	Marks	CO	BL
Q.1	i.	State the necessary and sufficient condition for static equilibrium of a particle in the two dimensions.	1M	1	2
	ii.	Define Moment of force.	1M	1	1.
	iii.	Define truss.	1M	2	1.
	iv	What are different methods of truss analysis?	1M	2	1
	٧.	Write the laws of limiting friction?	1M	3	1
	vi	Define Ladder Friction.	1M	3	1.
	vii.	What is the centroid of semi-circular section from base?	1M	4	1
3	viii.	What is the moment of inertia of circular section through centroid axis?	1M	4	2
	ix.	Define D'Alembert's Principle.	1M	5	1
	х.	Draw the Velocity-Time Curve.	1M	5	1
Q.2(A)	equi	re shows a 2-D or coplanar force system. If the whole assembly is in librium, then particle C and D are in equilibrium. Determine the force ach cables for a given weight of lamp = 150 kg.	10M	1	4

A beam is subjected to a force system shown in the figure. To find the 10M 1 4 resultant reactions and its position.

Q.2(B) $F_A = 50 \text{ N}$ $F_B = 100 \text{ N}$ $F_C = 25 \text{ N}$ $F_D = 25 \text{ N}$

Q.3(A) Find the support reactions and member forces in all members of the truss 10M 2 4 as shown in figure by method of joints.

Q.3(B) Find the support reactions and forces in the member of the truss as shown 10M 2 in the figure using method of sections..

10M

3

3

10M

Q.4(A) A 400 kN block is resting on a rough horizontal surface for which the coefficient of friction is 0.25. Determine the force P required to cause motion to impend if applied to the block (a) horizontally or (b) downward at 25° with the horizontal. (c) What minimum force is required to start motion?

Q.4(B) A ladder of length 4 m, weighing 200 N is placed against a vertical wall as shown in the figure below. The coefficient friction between the wall and ladder is 0.2 and that between the floor and ladder is 0.3. In addition to self-weight, the ladder has to support a man weighing 800 N at a distance of 2.7 m from A. Calculate the minimum horizontal forces to be applied at A to prevent slipping.

Q.5(A) To find the centroid with respect to the reference axis for the shaded area 10M 4 shown in Figure below (All dimensions are in mm).

Q.5(B) Determine the moment of inertia of the symmetrical I section shown in 10M 4 4 Figure with respect to its centroidal axes.

Q.6(A) A block of mass 50 kg, resting on a horizontal surface is pulleyed by a 10M 5 force 500 N as shown in figure below. Calculate the inertia force, acceleration, and velocity of the block, after it has travelled a distance of 10 m, take $\mu = 0.3$.

Q.6(B) A ball is dropped from the top of a tower 80 ft (24.38 m) high at the same 10M 5 instant that a second ball is thrown upward from the ground with an initial velocity of 40 ft/sec (12.19 m/s). When and where do they pass, and with what relative velocity? Solve the problem with neat diagram.

*** END***

Hall Ticket No:			Question Paper Code: 20CE102
-----------------	--	--	------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

MECHANICS OF FLUIDS

(Civil Engineering)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. Define Compressibility of fluid.	1M	1	1
	ii. What is differential manometer?	1M	1	1
	iii. Differentiate between steady and unsteady flow.	1M	2	2
	iv What is velocity potential?	1M	2	1
	v. What is Hydraulic Gradient Line?	1M	3	1
	vi What is equivalent pipe?	1M	3	1
	vii. Define sub-critical flow.	1M	4	1
	viii. What is specific energy of flow?	1M	4	1
80	ix. What is Hydraulic Jump?	1M	5	1
	x. What is gradually varied flow?	1M	5	1
Q.2(A)	i) Explain buoyancy and centre of buoyancy.	4M	1	2.
	(ii) Estimate the volume of water displaced and position of centre of	6M	1	5
	buoyancy for a wooden log of cross section 2.5 m (width) x 1.5 m (depth)			
	when it floats horizontally in water. The density of water is 650kg/m ³ and its			
	length is 6.0m.			
	OR			
9	i) State Newton's law of viscosity	3M	1	1
	(ii) The velocity velocity distribution for flow over a flat plate is given by	7M	1	Ü
Q.2(B)	$u = \frac{1}{2}y - y^4$, Where u is the point velocity in meter per second at a			
	distance y metre above the plate. Determine the shear stress at $y = 8cm$.			
	Assume dynamic viscosity =8 poise.			
Q.3(A)	(i) Classify different type of flows and state their conditions	4M	2	2
Q.5(A)	(ii) The diameters of a pipe in section 1 and 2 are 10cm and 20cm,	6M	2.	5
	respectively. Find the discharge through the pipe if the velocity of flowing	OIVI	7.	**
	water at section 1 is 5m/s. Also, find velocity at section 2.			
3.5	OR			
Q.3(B)	The velocity vector in a fluid flow is given as $V = 4x^3 - 10x^2yj + 2tk$. Find	10M	2	E
Q.5(5)	the velocity and acceleration of a particle at $(4,3,2)$ at time $t=3$.	20	_	
Q.4(A)	Find the head lost due to friction in a pipe of diameter 250mm and lentgh	10M	3	
Q.4(A)	60m. Rate of water flow is 3.2m/s. (i) use Darcy formula (ii) use Chezy's	TOM	ر	•
	formula. Take C =62			
	OR			
Q.4(B)	Three pipes of diameter 400mm, 200mm and 350mm of lengths 500m,	10M	3	,
~±(□)	300m and 400m, respectively are connected in series. If the head difference	10111	J	
	Joon and Hoom, respectively are connected in series. If the head difference			

Q.5(A)	(i) Classify flow in open channels.	4M	4	2
	(ii) Find the discharge through a trapezoidal channel of width 7m and side slop of 1:4 (H:V). The depth of flow of water is 2.5m and value of Chazy's constant C=50. The slope of the bed of the given channel is 1 in 5000	6M	4	5
	OR			
Q.5(B)	A trapezoidal channel has side slopes of 1H:2V and bed slope is 1 in 2000. The area of the section is 42m ² . Find the dimensions of the section if it is most economical. Determine the discharge of the most economical cross section if C=50	10M	4	5
Q.6(A)	(i) Based on Froude number, classify the hydraulic jumps. Draw suitable	4M	5	2
4.0(/1)	diagrams.	6M	5	5
	(ii) Depth of flow of water at a certain section of a rectangular channel of 2m width is 0.3m. The discharge through the channel is 2m ³ /s. Determine whether a hydraulic jump will occur and if so, find its height and loss of energy.			
	OR			
Q.6(B)	(i) Compare between distorted and undistorted model	ЗМ	5	2
	(ii) Find the expression of power (P) developed by a pump when P depends	7M	5	5
	on head (H), discharge (Q) and specific weight (w) of the fluid. *** END***			

Hall Tick	et No: Question Paper Code	: 20CE10	3	
	OANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, MA (UGC-AUTONOMOUS) Year I Semester (R20) Regular & Supplementary End Semester Examination SURVEYING			
3.	(Civil Engineering)			
Time	: 3Hrs	Max Ma		- 1
	Attempt all the questions. All parts of the question must be answered in one p All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B or	lace only. only	and the state of the	
		THE RESERVE		
Q.No	Question	Marks	co	BL
Q.1	i. What do you understand by well-conditioned triangle?	1M	1	1
	ii. Write the equipment and accessories uses for ranging and	1M	2	1
	chaining.	! 1M	2	* 1
	iii. What is the least count of a theodolite?	1M	1	1
	iv Differentiate between true meridian and magnetic meridian.	1M	5	1
	v. What is GIS? vi What are horizontal and vertical curves?	1M	3	2
	vi What are horizontal and vertical curves? vii. What is degree of a curve?	1M	3	2.
	viii. List the different segments of GPS?	1M	4	1
	ix. What is the full form of GPS?	1M	4	1
	x. Define Remote Sensing.	1M	5	1.
Q.2(A)	Calculate the area encounter between the surveying line of 48 m length	10M	1	4
٧٠٤(٨)	and shore of a lake. The surveying offset length as shown in below table.			
	Use any three offset methods.			
	Offset 1 2 3 4 5 6 7 8 9			
	Length 6 4.5 7 8 4.7 5.1 4 3.2 1.9			
NT.	OR			
Q.2(B)	Discuss in detail the various classification schemes of surveying.	10M	1	2
Bulletin State of Sta		10M	- 1000000000000000000000000000000000000	entracementalists in
Q.3(A)	Write in detail about the field procedure and its application of levelling	10101		· · · ·
	surveying. OR			
Q.3(B)	The following readings were taken with a dumpy level and 4m leveling	10M	2	4
Q.3(b)	staff. The instrument was shifted after 3rd and 6th readings. The			
	readings are 2.665, 3.225, 2.905, 1.85, 0.98, 2.62, 1.585, 0.96, 0.425m.			
	Enter the above readings in a page of level book and calculate R.L. of			
	points, if the first reading was taken with a staff held on B.M. of 240 m.			
	Use rise and fall method. Apply arithmetic checks.			manager of the second
Q.4(A)	the state of the s	10M	3	4

Q.4(A) A Tachometer was set up at station A and the readings on a vertically held staff at B were 2.233, 2.605 and 2.955, the line of sight being at an inclination of + 8° 24′. Another observation on the vertically held staff at B.M. gave the readings 1.920 m. Calculate the horizontal distance between A and B, and the elevation of B if the R.L of the B.M is 418.685 meters. The constants of the instruments were 100 and 0.

Q.4(B)	Instrument was set at P point. The line of sight with +32°0′ towards a levelling staff Q. The reading at this levelling staff is 1.620,1.420 and 1.120m. Compute the distance between P and Q and RL of Q point. The benchmark RL 320m and backsight was taken over on the bench mark with a vertically held levelling staff which is 1.2m.	10M	3	4
Q.5(A)	Two straight lines intersect at chainage 1150.50m and the angle of inter 120°. If the radius of the curve is 500m. Determine: (i) tangent distance (ii) the curve (iii) length of the long chord (iv) degree of curve (v) apex distance OR	10M	4	4
Q.5(B)	Write in detail about the different types of curves and its elements.	10M	4	2
Q.6(A)	What are the uses of an electronic total station in detail? OR	10M	5	2
Q.6(B)	Describe in detail the complete remote sensing process. *** END***	10M	5	3

and indicated and the property of the contract of the particular than the particular of the particular

Hall Ticket No: Question Paper Code: 20EEE1

(UGC-AUTONOMOUS)

B.Tech. II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

ELECTRICAL CIRCUIT ANALYSIS

(Electrical & Electronics Engineering)

Time: 3Hrs

Max Marks: 60

Attempt all the questions. All parts of the question must be answered in one place only.

All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only

			Marks	CO	BI.			
Q.1	i.	State maximum power transfer theorem.	1M	1	1			
	iis	From a linear network with DC Voltage source, the maximum power	1M	1	2			
		transferred to a load is 100 W. When the load is shorted, 2A DC						
		current flows. Find open circuit voltage.						
12	iii,	Explain an unbalanced electrical system.	1M	2	1			
	iv.	What is the power factor of a series RLC circuit at $X_L > X_C$?	1M	2	2			
	V.	Define time constant? Write its formula for series R-L circuit with DC	1M	3	1			
		excitation.						
	vix	Write the expression for capacitor voltage for a RC circuit with DC	1M	3	1			
		source.						
	vii.	Write the expression for Z parameters.	1M	4	2.			
139	viii.	Define two port network.	1M	4	1			
	ix.	What the transfer function?	1M	5	1			
	х.	Find the inverse Laplace transform of $X(s) = 1$.	1M	5	2.			
Q.2(A) Use mesh analysis to find currents <i>i1, i2 and i3</i> for following Fig. 1								

Fig. 1

OR

OR

Q.2(B) Obtain Thevenin's and Nortons equivalent circuit across a-b terminals as shown in Fig. 2.

10M

1 3

Fig. 2

- Q.3(A) i) A pure inductance of 318.3 mH is connected in series with a 200 Ω resistor to a 240 V, 50 Hz AC supply. Calculate (a) the inductive reactance of the coil, (b) the impedance of the circuit, (c) the current in the circuit, (d) the p.d. across each component.
 - ii) A sinusoidal voltage of $V = 50 \sin \omega t$ is applied to a series RL circuit. The current in the circuit is given by $I = 25 \sin(\omega t 53^0)$. Determine real power, reactive power and power factor.

OR OR

10M

10M

10M

2

2

3

OR

OR

2

3

3

3

- Q.3(B) A balanced three-phase, three-wire, 50Hz, 100 (L-N) volts supply is given to a load consisting of three impedances (1+j1), (1+j2) and (3+j4) Ω connected in star-connection. Assume phase sequence is RYB. Calculate line current and neutral current.
- Q.4(A) The circuit shown in the Fig. 4 is in steady state with the switch S closed. The switch is opened at t=0. Determine the voltage across the switch Vs and $\frac{dV_S}{dt}$ at t=0⁺.

OR

Q.4(B) Derive the expression for transient current for a RLC circuit with DC voltage 10M 3 source.

Q.5(A) Find the short circuit parameter of the circuit shown in below Fig. 4. 10M 4 3

Q.5(B)	Derive transmission parameters in terms of open circuit impedance	10M	4	3
0.6(4)	parameters and h-parameters. Also verify that AD-BC=1.	10M	i esercia	taur 🗇
Q.6(A)	Derive the Laplace transform of some common forcing functions with neat sketch.	10101	5	2.
	OR		OR	
Q.6(B)	Using Laplace method, find the value of $Vc(t)$ for t>0 in the circuit shown in	10M	5	3

Hall Ticket No:						Question Paper Code: 20EEE101

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

ANALOG ELECTRONICS

(Electrical & Electronics Engineering)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL				
Q.1 i,	Define the drift current in PN diode.	1M	1	1				
ıı,	Draw the Hybrid model for CE- Bipolar Junction Transistor.	1M	1	2				
iii.	iii. Define trans conductance in JFET							
iv.	What are the values of dc characteristics of ideal Operational Amplifier?	1M	2	1				
V.	Draw the circuit for series voltage regulator using operation amplifier.	1M	3	2				
vi.	Write the expression for output voltage of non-inverting amplifier.	1M	3	1				
vii.	1M	4	1					
viii.	1M	4	1					
ix.	How many resisters are required in a 12-bit weighted resister DAC?	1M	5	1				
- X.	What are the disadvantages of Flash type ADC?	1M	5	1.				
Q.2(A) i) Ex	plain the Fixed bias circuit for BJT and hence derive the stability factor.	6M	1	2				
ii) H	ow Zener diode works as voltage regulator?	4M	1	1				
	OR							
-	Explain the input and output characteristics of CE —Bipolar ctionTransistor	5M	1	2				
(Vce	ompute the values of collectorcurrent (Ic), Collector to emitter voltage a) and stability factor for the fixed bias – CE- Bipolar Junction transistor wn in figure. The current gain is h_{fe} = 100.	5M	1	4				

Q.3(A)	i) Elaborate the working operation of Depletion mode N channel MOSFET	5M	2	2
2	and hence draw its drain and transfer characteristics.			
	ii)Discuss the DC characteristics of operation amplifier.	5M	2	2.

Q.3(B)	i) Explain Junction Field Effect Transistor parameters and hence write the relationship between drain current and Gate to Source voltage.	6M	2	3			
	ii) Draw the op-amp-equivalent circuit and explain its operation.	4M	2	3			
Q.4(A)	i) Discuss the gain control for instrumentation amplifier.	5M	3	2			
	ii) Illustrate the operation of Schmitt trigger and draw transfer characteristics showing hysteresis.	5M	3	2			
	OR						
Q.4(B)	Explain in detail about 1. Differentiator 2. Integrator using operational amplifier and hence derive its transfer function.	10M	3	3			
Q.5(A)	(.5(A) i) Derive the transfer function of first order Low pass Butterworth filter and hence draw its frequency response.						
	ii) Design an HPF circuit for the cutoff frequency fl= 1khz, choose c=0.01μf.						
	OR						
Q.5(B)	i) Explain Non-sinusoidal -RC relaxation-Triangular wave generator in detail. ii) Design an astable multivibrator using 555 IC to provide a 1 KHz output with a duty cycle of approximately 50 %. Assume capacitor C=0.01 μ F.	10M	4	2			
			4	4			
Q.6(A)	i). With neat sketches explain the operation of successive approximation ADC.	6M	5	2			
	ii) Explain about pressure sensor (MPX2010).	4M	5	2			
	OR III						
Q.6(B)	Explain the 5-bit weighted resistor DAC with circuit diagrams and derive output voltage expressions.	10M	5	2			

*** END***

Hall Ticket No:											Question Paper Code: 20 EEE 104
-----------------	--	--	--	--	--	--	--	--	--	--	---------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations – Feb' 2023

DC MACHINES AND TRANSFORMERS

(EEE)

Time: 3Hrs

Max Marks: 60

Q.No	o	Question	Marks	CO	BL					
Q.1	\mathbf{i}_{∞}	Define MMF	1M	1	1					
	ii,	Write the expression of Force in term of partial derivative of stored energy with respect to position of a moving element.	1M	1	1					
	iii	Write the EMF equation of a DC Generator.	1M	2	1					
	iv	What is the functioning of Commutator in DC Machines?	1M	2	1					
	V.	Suggest the methods to reduce the Eddy current loss in rotating machines	1M	3	1					
	vi	Write the expression for shaft torque in DC Motors.	1M	3	1					
	vii.	What are called primary and secondary windings in a Transformer?	1M	4	1					
	viii.	Why transformers are rated in kVA instead of KW?	1M	4	1					
	ix.	What advantage has the star-connection over delta connection?	1M	5	1.					
	Х.	Write thr difference between transformer and Auto Transformer.	1M	5	1.					
Q.2(A)		ve the force and Torque as a partial derivative of stored energy with ect to position of a moving element	10M	1	2					
		OR								
Q.2(B)	An iron ring of mean length 80 cm has an air gap of 1 mm and winging of 10M 1 2 200 turns. If the relative permeability of iron is 600, when a current of 0.8 A flows in the winding. Determine the flux density neglecting leakage and fringing.									
Q.3(A)	Brie	fly explain the concept of Armature Reaction in a DC Generator.	10M	2	2					
		OR								
Q.3(B)	-	plain the Open circuit characteristic of separately excited DC erator.	6M	2	2.					
Name of the last o	ii) A 220volts,4 pole lap connected ,480 conductors, long shunt DC $4M$ 2 3 Compound Generator have the resistance of series field, shunt field and armature as 1.8Ω , 210Ω and 0.1Ω respectively. The maximum flux is 0.03wb. Calculate the currents in the generator.									
Q.4(A)	i) \	What is Back EMF? Write the significance of back EMF in a DC Motor.	4M	3	1					
¥	ii) A 4 Pole , 220 volts, shunt motor has 540 wave conductors. If it takes 32 $$ 6M $$ 3 $$ 2 A from the supply mains and develops output of 5.59KW.The field winding takes 1A current and armature resistance is 0.09 Ω and flux is 30mWb.Determine back emf and shaft torque of the motor.									
Q.4(B)	Expl	ain the various types of speed control methods of a DC Motor.	10M	3	2					

Q.5(A)	What is the working principle of Transformer? Develop the EMF Equation of	TOIM	4	3
	a single phase transformer			
	OR			
Q.5(B)	The connected instrument readings obtained from open circuit test and	10M	Ą	1
	short circuit test on 10KVA,450/120V,50Hz 1-ph transformer are			
	O.C test : Vo=120V,Io=4.2A,Wo=80W(LV SIDE)			
	S.C test: Vsc=9.65V, Isc=22.2A,Wsc=120W(HV SIDE) meter were			
	connected. calculate			
	i. Equivalent circuit parameters.			
	ii. Efficiency and voltage Regulation for 80% lagging p.f load.	Dr.	- v -	
Q.6(A)	Explain the concept of Parallel operation of three-phase transformers by	10M	5	2.
	considering necessary assumptions.			
	OR			
Q.6(B)	A load of 400 kVA at 0.8 pf lagging is supplied by two 3-ph transformers	10M	5	4
	of A and B of equal rating. The equivalent delta impedances as referred			
	to secondary are ($3+j$ 6) Ω and ($2+j$ 6) Ω respectively. Find the load			
	shared by the each transformer.			
	*** END***			

Hall Ticket No:		Question Paper Code: 20ME103
		Question Laper Couc. 20M2103

(UGC-AUTONOMOUS)

	Year I Semester (R20) Regular & Supplementary End Semester Examination BASIC THERMODYNAMICS		,	
-	(Mechanical Engineering)			
lin		Max Mark	s: 60	<u> </u>
	Attempt all the questions. All parts of the question must be answered in one place. All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only		is Horn	69
		Marks	СО	В
Q.1	i. Define microscopic & macroscopic approach in thermodynamics	1M	1	1
	ii. Define zeroth law of thermodynamics	1M	1	2
	iii. Define critical state in pure substance.	1M	2	-
	iv. List the types of steam used in steam nozzles / turbines	1M	2	
	v. What is a refrigerator?	1M	3	
	vi. What is a heat pump?	1M	3	
	vii. What is Joule-Kelvin effect?	1M	4	
	viii. What is DBT & WBT in Psychrometry?	1M	4	
	ix. What type of process takes place in steam condenser?	1M	5	u.
	x. Define Dual Cycle.	1M	5	
Q.2(A)	Derive the mass balance and energy balance equations for a steady flow process. Also derive the steady flow energy equation applied to turbine. OR	10M	1	
Q.2(B)	In a steam power station, steam flows steadily through a 0.25m diameter pipeline from the boiler to the turbine. At the boiler end, the steam conditions are found to be p= 4MPa, t= 400° C, h= 3213.6 kJ/kg, and v = 0.073 m³/kg. At the turbine end, the conditions are found to be p= 3.5 MPa, t = 392° C, h= 3202.6 kJ/kg, and v = 0.084 m³/kg. There is a heat loss of 8.5 kJ/kg from the pipeline. Calculate the steam flow rate.		1	
Q.3(A)	With a neat sketch draw and explain the P-T diagram for a pure substance. Also discuss sublimation, vaporization & fusion curves in detail in the diagram. OR		2	u art
Q.3(B)	Find the saturation temperature, the changes in specific volume and entropy during evaporation, and the latent heat of vaporization of steam at 1 MPa & 2 MPa.		2	
Q.4(A)	What is a refrigerator? Derive the expression for COP of a refrigerator connected with source and sink at temperatures T1 & T2. OR	10M	3	26.25
Q.4(B)	A reversible heat engine operates between two reservoirs at temperature of 600°C and 40°C. The Engine drives a reversible refrigerator which operates between reservoirs at temperature of 40°C and -20°C. The heat		3	

transfer to the heat engine is 2000KJ and net-work output of combined engine refrigerator plant is 360KJ. Evaluate the heat transfer to the refrigerator and the net heat transfer to the reservoir at 40°C. Reconsider the problem that the efficiency of the heat engine and the COP of the refrigerator are each 60% of their maximum possible values.

Q.5(A)	With neat sketch discuss in detail about Joule-Kelvin effect. Draw T-S 10M diagram for constant enthalpy curves and discuss about inversion curve and	4	2
	its significance. OR		
Q.5(B)	Explain the principle and working of Diesel cycle with ideal and actual P-V & 10M T-S diagrams. Also derive the expression for efficiency of the cycle.	4	3
Q.6(A)	In a steam turbine steam at 20 bar, 360°C is expanded to 0.08 bar. It then enters a condenser, where it is condensed to saturated liquid water. The pump feeds back the water into the boiler. Assume ideal processes; find per kg of steam the net-work and the cycle efficiency. If the turbine and the pump have each70% efficiency, find the reduction in the net-work and cycle	5	2
	efficiency.		
Q.6(B)	Explain the principle and working of Otto cycle with ideal and actual P-V & 10M T-S diagrams. Also derive the expression for efficiency of the cycle. *** END***	5	3
	MOTO PROFILE OF A MICHAEL PROFILE OF A SAFERY WAS ARREST		

Page 2 of 2

Hall Ticket No:											Question Paper Code: 20ME104
-----------------	--	--	--	--	--	--	--	--	--	--	------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

MATERIAL SCIENCE AND ENGINEERING

(Mechanical Engineering)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	СО	BL
Q.1	i. Draw and explain unary phase diagram.	1M	1	1
	ii. Differentiate substitional and interstitial solid solution with	1M	1	2
	examples?			
	iii. What is mean by Ficks law of diffusion?	1M	2	1
	iv Define cyaniding.	1M	2	2
	v. What do you mean by work hardening?	1M	3	1
	vi What is mean by quenching?	1M	3	2
	vii. What is meant by fatigue fracture?	1M	4	1
	viii, Define iso thermal transformation.	1M	4	2
	ix. List out the some importance tools steels.	1M	5	1
	x. Name any four thermoplastics and thermosetting plastics.	1M	5	2
Q.2(A)	Write a note on BCC, FCC and HCP crystalline structures.	10M	1	2
	OR			
Q.2(B)	With neat sketches describe the different types of bonds in solids.	10M	1	3
NAME OF TAXABLE PARTY.	Distinguish between elastic and plastic deformation of a solid.	10M	2	2
Q.3(A)		TOIVI	۷.	۷.
	OR			_
Q.3(B)	Explain micro structural changes that take place in steel during cooling.	10M	2	3
Q.4(A)	Explain any five mechanical property of material.	10M	3	2
	OR		(*)	
Q.4(B)	Define harden ability and explain Jominy End Quench test. How to	10M	3	3
α(υ)	use this Jominy end quench test data?			
Q.5(A)	Draw iron-iron carbide equilibrium diagram and mention the important	10M	4	2
0.0	composition and temperature.			
	OR			
Q.5(B)	Explain with a phase diagram of Binary eutectic reaction	10M	4	3
0.6(4)	List all types of composites and explain their advantages over other	10M	5	2
Q.6(A)	materials	10141	,	٤.
	OR			
O 6/B)	Write short notes on tool steels and their applications	10M	5	3
Q.6(B)		70141	5	7
	*** FND***			

Hall Ticket No:											Question Paper Code: 20ME105
-----------------	--	--	--	--	--	--	--	--	--	--	------------------------------

(UGC-AUTONOMOUS)

B.Tech. II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

FLUID MECHANICS AND HYDRAULIC MACHINERY

(Mechanical Engineering)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. Define surface tension.	1M	1	1
	ii. Differentiate between Newtonian and non-Newtonian fluids.	1M	1	Ą
	iii. State the assumptions made in deriving Bernoulli's equation.	1M	2	1.
	iv. Define Specific Gravity.	1M	2	1
	v. Define laminar & turbulent flow.	1M	3	1
	vi. Define Energy thickness.	1M	3	1
	vii. State the difference between impulse turbines and reaction turbine	s. 1M	4	1
	viii. Define Volumetric efficiency.	1M	4	1
	ix. List out the main parts of a centrifugal pump.	1M	5	1.
	x. Define slip of a reciprocating pump.	1M	5	1
Q.2(A)	 a) Explain the terms: i). Path line ii) Stream line iii). Streak line b) The dynamic viscosity of oil, used for lubrication between a shaft a sleeve is 6 poise. The shaft is of diameter 0.4 m and rotates at 190 r.p. 		1	2
	Calculate the power lost in the bearing for a sleeve length of 90 mm. T thickness of the oil film is 1.5 mm. OR			v
Q.2(B)	a) Explain different types of Fluid Flow.b) Calculate the capillary rise in a glass tube of 2.5 mm diameter wh	5M en	1	2.
181	immersed vertically in (a) water and (b) mercury. Take surface tension 0.0725 N/m for water and surface tension as 0.52N/m for mercury contact with air. The specific gravity for mercury is given as 13.6 and any of contact is 130°.	as 5M in	1	3
Q.3(A)	State the assumptions made in the derivation of Bernoulli's equation a hence derive the Bernoulli's equation.	nd 10M	2	3
Œ	OR			
Q.3(B)	Water is flowing through a pipe having diameter 300 mm and 200 mm the bottom and upper end respectively. The intensity of pressure at the bottom end is 24.525 N/cm ² and the pressure at the upper end is 9 N/cm ² . Determine the differences in datum head if the rate of flow throughpe is 40 litre/sec.	the .81	2	4

Q.4(A)	For the velocity profile for laminar boundary layer on a flat plate is: $\frac{u}{U} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$	10M	3	1
	Obtain an expression for displacement thickness, momentum thickness and energy thickness.			
	OR			
Q.4(B)	An Orifice meter consisting of 100 mm diameter orifice in a 250 mm diameter pipe has coefficient equal to 0.65. The pipe delivers oil (specific gravity = 0.8). The pressure difference on the two sides of the orifice plate is	10M	3	1
	measured by a mercury oil differential manometer. If the differential gauge reads 80 mm of mercury, find the rate of flow.			
Q.5(A)	With a neat sketch, describe the principle and working of a Pelton Turbine.	10M	4	2
	OR			
Q.5(B)	An inward flow reaction turbine has external and internal diameters as 1 m and 0.6 m respectively. The hydraulic efficiency of the turbine is 90% when the head on the turbine is 36 m. The velocity of flow at outlet is 2.5 m/s and discharge at outlet is radial. If the vane angle at outlet is 15° and width of the wheel is 100 mm at inlet and outlet.	10M	4	4
	Determine: (i) the guide blade angle, (ii) speed of the turbine, (iii) vane angle of the runner at inlet,(iv) volume flow rate of turbine and (v) power developed.			
Q.6(A)	A single-acting reciprocating pump, running at 50 rpm, delivers 0.01 m³/s of water. The diameter of the piston is 200 mm and stroke length 400 mm. Determine: (i) The theoretical discharge of the pump, (ii) Co-efficient of discharge, and (iii) Slip and the percentage slip of the pump. OR	10M	5	4

*** END***

Q.6(B) With a neat sketch, explain the principle and working of a centrifugal pump.

	30			
Hall Tick	et No: Question Paper Code: 2	.0ME102		
** ** /1 /*	ADANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, MAD	dΑΝΛα	۸۱۱۶	-
1 V 13-	(UGC-AUTONOMOUS)	MINAP	ALLE	-
B.Tech. I	Year I Semester (R20) Regular& Supplementary End Semester Examinations,	Februar	v - 20°	7 3
	ENGINEERING MECHANICS	, , ,	, 207	23
	(Mechanical Engineering)			
Tin		lax Mark	(s: 60	
	Attempt all the questions. All parts of the question must be answered in one place	e only.		
	All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only			
		Marks	CO	BL
Q.1	i. Distinguish clearly between resolution of forces and composition of	1M	1	2.
	forces.		_	4-
	ii. State Lami's Theorem.	1М	1	1
	iii. Distinguish between a simply supported truss and a cantilever truss.	1M	2	2
	iv. State the laws of friction.	1M	2	1
	v. List various methods of finding out the centre of gravity of a body.	1M	3	1
	vi. State the theorem of perpendicular axis.	1M	3	1
	vii. What is the difference between uniform acceleration and variable	1M	4	2.
	acceleration?			
	viii. What is a projectile? Give an example of a projectile.	1M	4	1
	ix. What are the units of work done? What is the relation between work	1M	5	2.
	done and power?			
	x. State the Principle of impulse momentum.	1M	5	1
Q.2(A)	The forces 20 N, 30 N, 40 N, 50 N and 60 N are acting at one of the angular	10M	1	3
	points of a regular hexagon, towards the other five angular points, taken in		20	
	order. Find the magnitude and direction of the resultant force.			
	OR			
Q.2(B)	Define Lami's theorem. Calculate the tensions in the ropes which support a	10M	1	3
	load of 25 N as shown in the figure 1.			
	60° A		5	
	В			
	852			
	45° 60°			
	25 N			
A DUTANA	Fig. 1			
Q.3(A)	Draw the free body diagram and find the maximum angle $\boldsymbol{\theta}$ at which the box	10M	2	3
	of weight 2.5 kg will start sliding down the inclined plane (take $g=10 \text{ m/s}^2$)			

as shown in the figure 2. Assume coefficient of static friction to be 0.35.

Fig. 2

OR

Q.3(B) Calculate the support reactions for the beam as shown in the figure 3.

10M 2 3

Q.4(A) Calculate the centroidal coordinates of the plane region shown in Fig. 4.

10M

3

3

Fig. 4 (All Dimensions are in mm)

OR

Q.4(B) Find the moment of inertia of a T-section having flange and web both 120 mm \times 30 mm about X-X axis passing through the centre of gravity of the section.

10M

3

3

Q.5(A) A stone is thrown vertically up from the top of a tower with a certain initial velocity. It reaches ground in 5.64 seconds. A second stone, thrown down from the same tower with the same initial velocity reaches ground in 3.6 seconds. Determine (i) the height of the tower, and (ii) the initial velocity of the stones.

10M

3

4

OR

Q.5(B) A projectile is aimed at a mark on the horizontal plane through the point of projection. It falls 12 metres short when the angle of projection is 15°; while it overshoots the mark by 24 metres when the same angle is 45°. Find the angle of projection to hit the mark. Assume no air resistance.

10M

3

Q.6(A) Two bodies A and B of mass 8 kg and 10 kg are placed on two smooth 10M 5 3 inclined planes as shown in Fig. 5. Find the acceleration of the body of mass 8 kg.

Fig. 5 OR

Q.6(B) A bullet of 25 g mass is fired with a speed of 400 m/s. What is its kinetic 10M 5 energy? If the bullet can penetrate 20 cm in a block of wood, what is the average resistance of the wood? If the bullet were fired into a similar block of 10 cm thick wood, what would be the exit speed?

3

*** END***

|--|

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Electronics & Communication Engineering)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	СО	BL
Q.1	i. Define Laplace transform of a function?	1M	1	1
	ii. Find the inverse Laplace transform of $\frac{6}{(p+2)^2+9}$	1M	1	1
	iii. Express Fourier integral of a function?	1M	2	1
8	iv State the change of scale property on Fourier transforms?	1M	2.	1.
	V. Find $Z(ne^{an})$?	1M	3	1.
	vi State the Initial value theorem on Z-transforms?	1M	3	1
	vii. Form the PDE by eliminating arbitrary constants a and c $z = ax + by$?	b from 1M	4	7 1
	viii. Solve $p-q=1$	1M	4	1
	ix. Write assumed solution form in method of separation of varia	ables. 1M	5	1
	x. Write the form of one dimensional wave equation?	1M	5	1
Q.2(A)	Prove that $L\{J_o(x)\} = \frac{1}{\sqrt{1+p^2}}$ and hence deduce that $\int_0^\infty J_o(x) dx = \int_0^\infty J_o(x) dx$	10M	1	3
	OR			
	Solve the following equations:	E 0. 4	1	3
	(i) $3\sin 2x = v(x) + \int_{0}^{x} (x-t)v(t)dt$	5M		
Q.2(B)	(i) $3\sin 2x = y(x) + \int_{0}^{x} (x - t)y(t)dt$ (ii) $y'' - 4y' + 4y = 0$ $y(0) = 0$; $y'(0) = 3$	5M		
e.	(ii) $y'' - 4y' + 4y = 0$ $y(0) = 0$; $y'(0) = 3$			·
Q.3(A)	Express $f(x) = \begin{cases} 1 \text{ for } x \le 1 \\ 0 \text{ for } x > 1 \end{cases}$ as a Fourier integral.	10M	2	4
	Hence evaluate $\int_0^\infty \frac{\sin\lambda\cos(\lambda x)}{\lambda} d\lambda$			
	OR			
Q.3(B)	(x, for 0 < x < 1)	1 10M	2	4
ä	(i) Find the Fourier cosine transform of $f(x) = \begin{cases} \hat{x}, & \text{for } 0 < x < x \\ 2 - x, & \text{for } 1 < x < x < x \end{cases}$ (ii) Find the Fourier sine transform of $e^{\frac{x}{2}ax}/x$.	< 2		
	(ii) Find the Fourier sine transform of $e^{\pm ax}/x$.		parality (PPP)	approximate or services
	If $U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$, evaluate u_2 and u_3			3

Q.4(B)	Using Z-transform solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0$, $u_1 = 1$	10M	3	3
Q.5(A)	(i) Form the PDE by eliminating the arbitrary functions from	10M	4	2
	(a) $z = f(x) + e^y g(x)$ (b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$			
	(ii) Solve the following equation $\frac{\partial^3 z}{\partial^2 x \partial y} + 18xy^2 + \sin(2x - y) = 0$ by direct			
	integration.			
	OR			
Q.5(B)	(i) Solve the Lagrange's linear equation $p \tan x + q \tan y = \tan z$	10M	4	3
	(ii) Solve the non-linear equation $2xz - px^2 - 2qxy + pq = 0$ by Charpit's method			
Q.6(A)	Using the method of separation of variable, solve $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$;	10M	5	3
	where $u(x,0) = 4e^{-x}$.			
	MILE OR THE PROPERTY OF THE PR			
Q.6(B)	Find the eigenvalues λ_n and eigenfunctions $y_n(x)$ for the equation $y'' + \lambda y = 0$ in each of the following cases:	10M	5	3
	(i) $y(0) = 0$, $y(2\pi) = 0$		lir »	
	(ii) $y(-L) = 0$, $y(L) = 0$ when $L > 0$			
	(iii) $y(a) = 0$, $y(b) = 0$ when $a < b$			
	William Control of the Control of th			

*** END***

Ques	tion l	Paper	Code:	20ECE10)]
------	--------	-------	-------	---------	----

Hall Ticket No:

MADANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, MADANAPALLE

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations - Feb' 2023

NETWORK THEORY

(ECE)

Time: 3Hrs

Max Marks: 60

2

1

Attempt all the questions. All parts of the question must be answered in one place only.

All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only

Q.N	0	Question	Marks	CO	BL
Q.1	i.	Define millers theorem.	1M	1	1
	ii.	Define link, twig and tree.	1M	1	1
	iii.	What happens to resonant frequencies for a series RLC network if C changed to 2C?	1M	2	1
	iv	Which resonance circuit performs current magnification?	1M	2	1
	٧.	Define initial and final value theorem.	1M	3	1
	vi	Find the Laplace transform of cosωt.	1M	3	1
	νii.	Write the expressions for hybrid parameters	1M	4	1
	viii.	Write the parameter Y ₁₁ in terms of Z parameters	1M	4	1
	ix.	Define driving point impedance.	1M	5	1
	X.	Define decibel and Neper.	1M	5	1
Q.2(A)	Find	the fundamental cut-set matrix for the graph shown in figure 1.	10M	1	2

Q.2(B) For the graph shown in fig. Write down the incidence matrix, tie set matrix and cut set matrix. (Twigs dark lines and links by dotted lines)

tion Paper Code: 20ECE103
S1

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations – Feb' 2023

ELECTRONIC DEVICES & CIRCUITS

(ECE)

Time: 3Hrs

Max Marks: 60

Q.N	Question	Marks	СО	BL
Q.1	 Write the Einstein relation connecting drift and diffusion phenomena in semiconductors. 	1M	1	1
	ii. State Mass-action law and write its expression.	1M	1	1
	iii. Draw the I-V characteristics of Tunnel diode.	1M	2	1
	iv List the four applications on LED.	1M	2	2
	v. What is the impact of base-width modulation (Early effect) in BJTs?	1M	3	1
	vi Why FET is called a voltage-controlled device?	1M	3	1
	vii. Write down four applications of diode.	1M	4	1
	viii. Draw the input and output waveforms of a bridge rectifier.	1M	4	1
	ix. Why are h-parameters not used at high frequencies?	1M	5	1
	x. Draw the hybrid model for CE configuration.	1M	5	1
Q.2(A)	Describe Hall Effect. Derive the expression for hall voltage, carrier	10M	1	2
	concentration and mobility.			
	OR			
Q.2(B)	Compare the characteristics of ideal versus practical diode. Write down four	10M	1	2
	practical applications of diode.			
Q.3(A)	Explain the working principle of tunnel diode with necessary band diagrams.	10M	2	2
	Also, illustrate the V-I characteristics and the negative resistance phenomenon.			
	OR			
Q.3(B)	Derive the expression for the built-in voltage of a p-n junction diode under	10M	2	6
	thermal equilibrium.			
Q.4(A)	A transistor with I_B = 100 μA and I_C = 2 mA. Find α , β of the transistor, I_E and if I_B	10M	3	3
	changes by 25 μA and I_C changes by 0.6 mA, find the new value of β .			
	OR			
Q.4(B)	Draw the construction of n-channel JFET. Apply the proper biasing between	10M	3	3
	drain and source and sketch the depletion region for V_{GS} =0 V.			
Q.5(A)	Explain the working principle of Clipper and Clamper circuits.	10M	4	2
	OR			
Q.5(B)	A full wave rectifier is fed from a transformer having a center tapped	10M	4	3
Q.3(D)	secondary winding. The RMS voltage from either end of secondary to center	10141	7	•
	tap is 30V. If the diode forward resistance is 2Ω and that of the half secondary			
	is 8Ω , for a load of $1k\Omega$, determine the power delivered to load, percentage			
	regulation efficiency and transformer utility factor (TUF) of secondary.			
Q.6(A)	Analyze the Low-Frequency response model for BJT amplifier.	10M	5	4
	OR		_	-
Q.6(B)	Explain the operation of common source (CS) amplifier circuit and derive the	10M	5	2
Q.0(B)	expressions for its small-signal voltage gain, current gain, input impedance and	TOIAI	J	_
	output impedance.			
	*** PAID***			

Hall Ticket No:		Question Paper Code: 20ECE102
-----------------	--	-------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supply End Semester Examinations – February-2023

DIGITAL SYSTEM DESIGN

(ECE)

Time	e: 3Hrs	Max Ma	arks: 60)
	Attempt all the questions. All parts of the question must be answered in	one place	e only.	
	All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A	or B only	1	
Q.N	Question	Marks	СО	BL
Q.1	i. Write the Hexa code for the equivalent of (43) _{10.}	1M	1	2
	ii. Define the following terms: (a) SOP (b) POS.	1M	1	1
	iii. Write the limitation of Half Subtractor.	1M	2	1
	iv Write the Boolean expression for sum and carry of a half adder	1M	2	1
	v. Define Latch and Flip-flop	1M	3	1
	vi Write the difference between Synchronous and Asynchronous counters	1M	3	1
	vii. Draw the basic configuration of PAL.	1M	4	1
	viii. Compare RTL and DTL logic families.	1M	4	1
	ix. State the difference between Verilog and VHDL?	1M	5	1
	x. List out the levels of abstraction in VHDL.	1M	5	1
Q.2(A)	Design the following expression using K-Map and implement it using the NAND Logic: F (w, x, y, z) = Σ m (0, 1, 4, 8, 9, 10) + d (2, 11) OR	10M	1	3
Q.2(B)	Express the following numbers in decimal form: (i) $(10110.0101)_2$ (ii) $(16.5)_{16}$ (iii) $(26.24)_8$ (iv) $(ABCD.E)_{16}$.	10M	1	3
Q.3(A)	Explain about the BCD Adder with neat logic diagrams. Realize their output using basic gates.	10M	2	2
	OR			
Q.3(B)	Design 8x1 Multiplexer and also implement 8x1 multiplexer by using 4x1 Multiplexer	10M	2	2
Q.4(A)	Design Asynchronous 4-bit binary Up-counter using JK flip-flop. and draw its timing diagram with truth table.	10M	3	2
Q.4(B)	OR	10M	3	2
Q.4(b)	Design SISO, SIPO shift Register using D - flip-flop	TOIAI	J	Z Westerland
Q.5(A)	What is programmable logic array (PLA)? Discuss the design of a combinational circuit using PLA with suitable example. OR	10M	4	2
Q.5(B)	Explain briefly about CMOS logic considering NAND and NOR gates as example.	10M	4	2
Q.6(A)	Write the VHDL code for Half adder and Full Adder. OR	10M	5	3
Q.6(B)	Explain Data flow modeling of combinational and sequential circuits. How does it differ from Behavioral Modeling? *** END***	10M	5	2

Hall Ticket No:						Question Paper Code: 20CST101
Hall Heret No.						Question apar assure

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February/March - 2023

DIGITAL DESIGN

(Computer Science & Technology)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. State the Duality property of Boolean Algebra	1M	1	2.
	ii. Design an XOR gate using NAND gate.	1M	1	1
	iii. Define Minterms and Maxterms	1M	2	3
	iv Convert the given Boolean function to Maxterms: $A(A' + B)C'$.	1M	2	2
	v. Draw the logic diagram of Half Adder.	1M	3	2
	vi What is the advantage of Look Ahead Carry Adder as compared to Parallel Adder.	1M	3	3
	vii. What will be the resulting modulus (Mod), if Mod 6 & Mod 5 counter are cascaded.	1M	4	2
	viii. What is the minimum number of flip-flops required for designing a MOD-9 UP/Down counter	1M	4	3
	ix. Draw the basic configuration of PAL.	1M	5	2
	x. List the various types of ROMs.	1M	5	3
Q.2(A)	(i) Convert the decimal number (123456) ₁₀ to Binary, Octal, and	10M	1	3
	Hexadecimal. (ii) Perform subtraction by using 2's Complement method for the given			
	ones:			
	(a) 111001 – 101010			
	(b) 10011 – 10001			
	OR	1004	1	-
Q.2(B)	Why NAND and NOR gates are called as Universal Gates? Implement the logic AND, OR, NOT, and EX-OR function using the NOR gate?	10M	1	3
Q.3(A)	Simplify the expression, F (A, B, C, D) = Σ m (0,2,,3,6,7,8,10,11,12,15) using K-Map	10M	2	2
	OR			
Q.3(B)	Implement the expression, F (A, B, C, D) = Σ m (0, 1, 3, 4, 5, 7, 10, 13, 14, 15) using Tabulation Method. Also, realize the redundant expressions with the help of NAND gate.		2	
Q.4(A)	 i) Design a Full Adder circuit with two Half Adder circuit. (ii) Design3:8 Decoder with neat diagram and explain the truth table to perform its analysis 	10M	3	
Q.4(B)	OR Design the following Combinational Circuits with their relevant explanations: (a) Decimal to BCD Encoder (10:4 Encoder) (b) Binary to Octal Decoder (3:8 Decoder)	10M	3	

Q.5(A)	Explain the procedure for converting of one Flip-Flop to other. By using the sconvert the following:	10M	4	3
	(i) SR-FF to JK-FF.			
	(ii) JK-FF to D-FF			
	OR			
Q.5(B)	Explain in details, the implementation of Asynchronous 4-bit Counter using JK flip-flop.	10M	4	3
Q.6(A)	What is Programmable Logic Array (PLA). Discuss the design of a combinational circuit with suitable example by using the concept of PLA OR	10M	5	2
Q.6(B)	Apply the following Boolean functions in PAL. (a) $A(w,x,y,z)=\sum m(0,2,6,7,8,9,12,13)$ (b) $B(w,x,y,z)=\sum m(0,2,6,7,8,9,12,13,14)$ (c) $C(w,x,y,z)=\sum m(1,3,4,6,10,12,13)$ (d) $D(w,x,y,z)=\sum m(1,3,4,6,9,12,14)$	10M	5	3
	*** FND***			

Hall Ticket No:											Question Paper Code: 20CST102
-----------------	--	--	--	--	--	--	--	--	--	--	-------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

DATA STRUCTURES AND ALGORITHMS

(Computer Science & Technology)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. What is data structure? How it is classified?	1M	1	1
	ii. State the advantages of circular lists over doubly linked list.	1M	1	2
	iii. List the real time application of queues.	1M	2	2
	iv Write a routine to check whether the stack is full or empty.	1M	2	2
-	v. What do you mean by internal Sorting?	1M	3	1
1,2	vi Compare quick sort and merge sort.	1M	3	2
	vii. The depth of complete binary tree is 8 and compute the number of nodes in leaf.	1M	4	2.
	viii. Define Binary Search Tree	1M	4	1
	ix. What is meant by strongly connected in a graph?	1M	5	1
	x. List the applications of depth first traversal	1M	5	2.
Q.2(A)	(i) State the polynomial representation for $6x^3+9x^2+7x+1$ using linked list.	10M	1	3
25	(ii) Write procedure to add two polynomial and explain with suitable example OR			
	What are the ways to insert a node in a linked list? Write an algorithm for	10M	1	2
Q.2(B)	inserting a node before a given node in a linked list.	20111		
Q.3(A)	Write the procedure to convert the infix expression to postfix .convert the expression A-(B/C+(D%E*F)/G)*H to postfix form. OR	10M	2	3
Q.3(B)	Explain the different operation that can be performed on Stacks? Write the algorithm for each operation.	10M	2	2
Q.4(A)	Write down the algorithm for Quick sort and using it sort the sequence of numbers 42, 23, 74, 11, 65, 57, 94, 36, 99, 81, 61.	10M	3	7
Q.4(B)	OR Given the input { 4371, 1323, 6173, 4199, 4344, 9679, 1989 } and a hash function of h(X)=X (mod 10) show the resulting: (i) Separate Chaining hash table (ii) Open addressing hash table using linear probing	28	3	3
Q.5(A)	Write an algorithm to insert , delete, Find minimum and maximum element from a binary search tree.	10M	4	

OR

Q.5(B) What is AVL tree? Illustrate the steps in the algorithm for deleting node from a AVL tree with an example.
 Q.6(A) Apply the Kruskal's algorithm to find the minimal spanning tree for the 10M 5 4

B 6 D 5

following graph.

OR

Q.6(B) Present the pseudocodes of the different graph traversal methods and 10M 5 demonstrate with an example.

Hall Ticket No:						Question Paper Code: 20CST103

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

DATABASE SYSTEMS

(Computer Science & Technology)

Time: 3Hrs

Max Marks: 60

Attempt all the questions. All parts of the question must be answered in one place only.

All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only

Q.No		Question	Marks	CO	BL
Q.1	i.	What is a Database? Give an example.	1M	1	DL
	ii.	What is meant by schema and instance?		1	1
	iii.	What is meant by DML?	1M	Ţ	Ţ
	iv		1M	2	7
		Write the syntax to update the salary from 500 to 5000 for the employee 'E1'.	1M	2.	1
	٧.	Write the different types of function dependencies?	1M	3	1
(4)	vi	What is Redundancy?	1M	3	J. 1
	vii.	Draw the States of transactions.	1M	4	1
	viii.	What is Cascading rollback?			1
	ix.	What is importance of access control?	1M	4	.]
	х.		1M	5	1
0.2/41	THE PERSON NAMED IN	Analyse the Authorization in application layer vs. database layer?	1M	5	3
Q.2(A)	Desi	gn the relation model for the given the ER Diagram.	10M	1	4

OR

	Explain Database Architecture with neat diagram.	9	10M	1	3
Q.3(A)	Construct the SQL queries for the following:		10M	7	7
	i) Display all ampleyee sub		70141	2	۷.

- i) Display all employee whose name start with 'A' and third character is 'a'.
- ii) Display name, number and salary of those employees whose name is 5 characters long and first three characters are 'Ani'.
- iii) Display the non-null values of employees and also employee name second character should be 'n' and string should be 5 character long.
- iv) Display the null values of employee and also employee name's third character should be 'a'.

OR

Q.3(B)	Illustrate the usage of key in designing database and explain its types.	10M	2	4
Q.4(A)	State the Procedure to find minimal set of FD's and solve the following $A \rightarrow B$, $C \rightarrow B$, $D \rightarrow AB$ C , A $C \rightarrow C$ using the same.	10M	3	4
Q.4′ ₍ B)	OR Explain briefly about 3NFand BCNF with suitable examples?	10M	3	2
C ₂ .5(A)	Define conflict equivalent schedule. Detect whether the following the schedules are conflict equivalent or not. $S1: R1(A) \ R2(B) \ W1(A) \ W2(B)$ $S2: R2(B) \ R1(A) \ W2(B) \ W1(A)$	10M	4	4
Q.5(B)	OR State the comparison between the ordered indexing and hashing.	10M	4	4
Q.6(A)	uss at homes of Assess control models	10M	5	2
Q.6(B)	OR OR OR OF THE STATE OF THE ST	10M	5	2

Hall Ticket No:						Question Paper Code: 20CSE106
						-

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular& Supplementary End Semester Examinations, February - 2023

DATABASE MANAGEMENT SYSTEMS

(Computer Science & Engineering)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL				
Q.1	i. Define Schema.	1M	1	1				
	ii. Define instance	1M	1	1				
	iii. Define Cursor.	1M	2	1.				
- 2	iv What is the difference between stored procedure and function?	1M	2	1				
	v. What is INF	1M	3	1.				
	vi Define loss less join decomposition with example?	1M	3	.1.				
	vii. Define B-Tree.	1M	4	1.				
	viii. What is serializability?	1M	4	1				
	ix. Compare immediate and deferred update	1M	5	2.				
	x. Define NOSQL database	1M	5	1				
Q.2(A)	Explain in detail about DBMS architecture in detail.	10M	1	2				
13	OR							
	Design and draw an ER diagram that captures the information about the	10M	1.	6				
Q.2(B)	Hotel Management System.							
Q.3(A)	Explain in detail about relational algebra in DBMS	10M	2	2				
	OR			<u> </u>				
Q.3(B)								
	, ,, ,,			2				
Q.4(A)	What is meant Functional Dependency? Explain its types in detail.	10M	3	1				
	OR							
Q.4(B)	Explain 1-NF and 2-NF with suitable examples.	10M	3	2.				
Q.5(A)	What is transaction? Explain ACID Properties of transactions with	10M	4	2				
, ,	examples							
	OR							
Q.5(B)	Explain the Time Stamp - Based Concurrency Control protocol?	10M	4	2.				
F30								
Q.6(A)	Explain the two approaches for log-based recovery.	10M	5	2				
,	OR							
Q.6(B)	Discuss the shadow paging recovery technique	10M	5	. 6				
٧.٥(٥)		70141	,					
	*** END***							

	 _	_			_	_	1
Hall Ticket No:							Question Paper Code: 20CSE104

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

DATA STRUCTURES

(Computer Science & Engineering)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	co	BL					
Q.1	i. Differentiate between singly linked list and doubly linked list.	1M	1	4					
	ii. List the Applications of Circular linked list.	1M	1	2					
	iii. Define Double ended queue?	1M	2	1					
	iv Write a pseudocode for push operation of stack.	1M	2	1					
	v. What is a skew tree?	1M	3	1					
	vi Define degree of a Node in Tree.	1M	3	1					
	vii. What is open addressing?	1M	4	1					
	viii. What Is the time complexity for selection sort algorithm?	1M	4	1					
	ix. What are the properties of Red Black tree?	1M	5	1					
	x. List the Applications of Graphs.	1M	5	2					
Q.2(A)	Write an algorithm to insert a new node at the end of a singly linked list and traverse it. Explain with an example.	10M	1	3					
	OR		1	4					
Q.2(B)	Discuss in detail about asymptotic notations. 10M								
Q.3(A)	How can we represent queue? Explain with examples.	10M	2	1					
	OR								
Q.3(B)	Write an algorithm to convert a infix expression into postix using stack and	10M	2	3					
	convert the following:								
	A ^ B + C - D + (E * F) / (G+H)								
Q.4(A)	Explain the implementation of max heaps with examples	10M	3	4					
	OR								
Q.4(B)	What is a BST? Construct a BST for the following values and analyze the	10M	3	3					
	height of the constructed BST.								
	67, 12, 89, 45, 43, 9, 34, 89, 32, 63, 83, 54, 49, 51								
Q.5(A)	Evaluin about Morgo cort algorithm with evample	10M	4	4					
٧.٥(١٦)	Explain about Merge sort algorithm with example. OR								
Q.5(B)	Define collision in hashing. Explain collision resolution techniques in context of hashing with example.	10M	4	2					

Q.6(A) Write an algorithm to AVL tree insertion. Insert the following elements in an empty tree and balance the tree after each insertion:

10M

5

Data: 3, 6, 5, 8, 19, 10, 2, 17,13,11,1,4

OR

 $\label{eq:Q.6} Q.6 (B) \quad \text{What is DFS? Traverse the following graph using DFS.}$

10M

5 4

Hall Ticket No: Question Paper Code: 20CSE
--

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

OBJECT ORIENTED PROGRAMMING USING C++

(Computer Science & Engineering)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. List the features of Object-Oriented Programming.	1M	1	1
	ii. What is encapsulation and give an example.	1M	1	1
(*)	iii. Define this pointer in C++.	1M	2.	1
	iv What is Copy constructor?	1M	2	1.
	v. State the difference between Static and Dynamic Binding.	1M	3	1
	vi Define aggregation.	1M	3	1.
	vii. Sketch the C++ Stream class hierarchy.	1M	4	1.
	viii. How can we handle Errors while dealing with files?	1M	4	1
	ix. Write the syntax of class template?	1M	5	1
	x. List the different types of exceptions in c++.	1M	5	1
Q.2(A)	(i) Explain about various C++ statements with example program.	5M	1	2
_, _,	(ii) What are the different ways to define member functions of a class.			2
	What is the role of scope resolution operator in the definition of	5M		
	member function?			
	OR			
0.0(0)	Design a simple calculator to add, subtract, multiply and divide using	10M	1	4
Q.2(B)	switch and break statement.	NAME OF THE OWNER, WHEN		HIPONOISTRU
Q.3(A)	Create a class 'Student' with three data members which are name, age and address. The constructor of the class assigns default values to name as "unknown", age as '0' and address as "not available". It has two functions with the same name 'setInfo'. First function has two parameters for name and age and assigns the same whereas the second function takes has three parameters which are assigned to name, age and address respectively. Print the name, age and address of 10 students. Hint - Use array of objects.	10M	2	6
	OR			
Q.3(B)	(i) What are the features of friend function? Discuss friend class with an	5M	2	2
Z-(-/	example program.	5M		2
	(ii) Explain functional overloading with example.			peubrustien
Q.4(A)	Briefly explain about the following:	10M	3	2
~. · (i· ·)	(i) Copy Constructor			
	(ii) Pure virtual functions			
	OR			
			_	_
Q.4(B)	What are abstract classes? Give an example (with the program) to	10M	3	2.

Q.5(A)	Discuss about various C++ I/O Streams with example program.	10M	4	2
Q.5(11)	OR	10M	4	6
Q.5(B)	Create a C++ Program to Read and Write Student Details using File	TOIAI	4	O
	Handling techniques.	A CONTRACTOR OF THE PARTY OF TH	ENHADOLINA EXTR	nemental (
Q.6(A)	Write a C++ program using function template for finding the maximum	10M	5	3
	value in an array.			
	OR No. of the same			_
Q.6(B)	(i) What is a user defined exception. Write down the scenario where we	5M	5	2
	require user defined exceptions.	5M		2
	(ii) When do we need multiple catch blocks for a single try block? Give	H RH, H		
•	an example. *** END***			

Hall Ticket No:										QP Code: 20CSE103/20CAI103/20CSD103
-----------------	--	--	--	--	--	--	--	--	--	-------------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations – Feb' 2023

COMPUTER SYSTEM ARCHITECTURE

(Common to CSE, CSE-AI, CSE-DS)

Time: 3Hrs

Max Marks: 60

Q.No	0	Question	Marks	со	BL
Q.1	i.	Write down the equivalent Gray code for [10010110] ₂ .	1M	1	2
	ii.	Differentiate between an Encoder and Decoder.	1M	10	2
	iii.	Express $(-120)_{10}$ in 8-bit and 16-bit signed integer format.	1M	2	2
	iv	What are guard bits? Why are they essential?	1M	2	1
	٧.	List out the segment registers of Intel 8086 microprocessor.	1M	3	1
	vi	Specify the purpose of PSW.	1M	3	1
	vii.	Define the term pipelining.	1M	4	1
	viii.	Mention the characteristics of Symmetrical Multiprocessors.	1M	4	1
	ix.	Differentiate between Write Back and Write Through Protocol.	1M	5	2
	х.	A 16 KB cache memory has 64 sets and each cache block has a capacity of 64 bytes. Determine the number of cache lines.	1M	5	4
Q.2(A)		sign 8 X 1 Multiplexer with suitable logic gates. esign a JK Flip flop and illustrate its working with a characteristic e.	6M 4M	1	3
Q.2(B)	Usin F=∑r	OR g K-map method reduce the following Boolean function m(0,2,3,6,7) + d(8,10,11,15) in SOP and POS forms.	10M	1	4
Q.3(A)		trate the flow chart for a Non - Restoring Division algorithm with dend as 22 and divisor as 3.	10M	2	3
Q.3(B)	invo	OR w the block diagram of a floating-point adder and illustrate the steps lived in single precision floating-point addition with a suitable mple.	10M	2	3
Q.4(A)		ne the term addressing mode. Illustrate the various x86 addressing des with suitable examples.	10M	3	2
		- OR			_
Q.4(B)	Unit		and to see to	3	2
Q.5(A)		ustrate the working of a six-stage instruction pipeline with a suitable	5M	4	2
		ng diagram. xplain in detail about methods to overcome control hazards. OR	5M		
Q.5(B)	Exp	lain about Flynn's taxonomy of Parallel Processor architectures in	10M	4	2
	•	Description of a			

Q.6(A)	What is	RAID? Ex		2
a (17)			OR	_
Q.6(B)		e of 16 b	oine with byte addressable main memory of 1 MB and 10M 5 oytes. If the cache memory is 1KB and assuming a direct	4
	index ar	nd block o vhat cach i) ii)	w the physical address bits are divided into tag, line offset bits. The line are the below physical address bits stored?	
	iii) Supp			
			hat are the addresses of the other bytes in the same	
	block st	ored alor	ng with it?	
			*** END***	
		N/LT		
				4
			-210(D, 3.6.7) + 688.10(3.1.25) in SOP and POS forms	
			Husbatte the New diad for a Non-Resideing Department Agricultur with	
			divisional as 22 and always as 3.	
			OR Craw the block-diagram of a fleeting-point adder and illustrate the steps.	
	6	MUL	Define the term addressing route. Illustrate the various site addressing modes with suitable examples.	
			What is a Control Unit? Explain in detail about the Microprogrammed Control.	
			i) (Illustrate the working of a spectage instruction piperne with a suitable traing diagram.	

Hall Ticket No:		Π				Qu	estion Paper Code: 20CAI104/20CSD104
Hall Hicker No.						Qu	estion raper code. Zoenizo ij zoesbxen

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

DATA STRUCTURES USING PYTHON

(Computer Science & Engineering (AI and DS))

Time: 3Hrs

Max Marks: 60

Attempt all the questions. All parts of the question must be answered in one place only.

All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only

Q.No	Question	Marks	CO	BL
Q.1	i. List any four operations in Map ADT.	1M	1	1
	ii. Differentiate between Array and List.	1M	1	2.
	iii. Mention merge sort's complexity	1M	2	1
	iv Draw the structure of singly linked list	1M	2	1
	v. Give two-way representation of sparse matrix with examples.	1M	3	1
	vi List the applications of stack.	1M	3	1.
	vii. Write condition to check whether the circular queue is i) Full ii) Empty	1M	4	1
	viii. List any two techniques to overcome hash collision.	1M	4	1
	ix. Define the balance factor of node in AVL tree.	1M	5	1.
	x. Differentiate Binary tree and Binary Search Tree	1M	5	2
Q.2(A)	Write short note on the unique features of ADT's Bag, List, Matrix and Date in python.	10M	1	2.
	OR			
Q.2(B)	Explain the importance of Set ADT with its implementation for following operations: i) add ii) remove iii) union iv) intersection v) difference and	10M	1	2
0.0/4\	vi) iterator	100/	2	
Q.3(A)	Given the following list of keys 56, 67, 44, 53, 14, 36, 59, 98, 74, 27 Show the working of Selection Sort with sufficient python code and perform complexity analysis on it. OR	10M	2	3
Q.3(B)	i) Write python code to implement linear, binary search algorithms	10M	2	3
Q.5(b)	ii) Compare complexities of linear search and binary search.	10141	-	
Q.4(A)	 i) Write python code and then convert the given infix expression P*(Q+R)*S to postfix step-by-step by using stack. ii)Apply the concept of postfix expression evaluation using stack for evaluating 6 5 2 + * 4 * 	10M	3	3
	OR			
Q.4(B)	Demonstrate the different types of operations used in Queue with examples.	10M	3	3
Q.5(A)	Given the values $\{2541, 3234, 4839, 730, 32, 327, 3120\}$, a hash table of size 6, and hash function $h(x) = x \mod 6$, show the resulting table after inserting the values in the given order with each of the following collision strategies i. Separate chaining		4	3

Double hashing with second hash function $h_1(x)=(2x-1) \mod 6$

Q.5(B)	Illustrate different operations on doubly linked lists with necessary algorithms.	10M	4	3
Q.6(A)	Construct a Binary Search Tree by using the list of elements 30,10, 4, 19, 62, 35, 28, 73. Show the results after deleting the nodes 4 and 62 one after the other of the constructed tree.	10M	5	3
	OR			
Q.6(B)	Write a routine for AVL Tree insertion. Insert the following elements in the empty tree and how do you balance the tree after each element in insertion. Elements: 2, 5, 4, 6, 7,9, 8, 3, 1, 10.	10M	5	_3

Hall Ticket No:						Question Paper Code: 20CAI106
	-	1	 		 	 /20CSD106

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE

(Common to CSE (AI) and CSE (DS))

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. List any two advantages of rational agent-based AI approach	1M	1	J .
	ii. Define problem formulation	1M	1	2
	iii. Define abstraction in formulation of real world problems	1M	2	2
	iv Give the time complexities of BFS, DFS search strategies	1M	2.	1
	v. Define global constraint	1M	3	2
	vi What is Min–Max Strategy?	1M	3	1
	vii. What is the difference between Syntax and semantics?	1M	4	1
	viii. For the given sentence "All Pompeian's were Romans" write a well	1M	4	3
	formed formula in predicate logic.			
	ix. List any two components of planning system	1M	5	.1
	x. State the concept of Uncertainty.	1M	5	2
Q.2(A)	Write short notes on rationality and omniscience.	10M	1	2
19	OR			
	"Intelligent agents are supposed to maximize their performance measure",	10M	1	2.
Q.2(B)	briefly describe how problem solving agents maximize their performance.	10111	4.	1
Q.2(b)	aneny describe now problem solving agents maximize their performance.			
Q.3(A)	Explain with examples the following and give their time complexities	10M	2	3
. ,	1. Breadth-first search,			
	2. Depth first search			
	·			
84	OR			
Q.3(B)	How an algorithm's performance is evaluated? Compare different	10M	2	5
-(-)	uninformed search strategies in terms of the four evaluation criteria.			
Q.4(A)	Explain A* algorithm with example. Identify the major differences between	10M	3	3
	A* and AO* algorithms?			
	OR			
Q.4(B)	With a neat algorithm and game tree explain how Alpha-Beta Cutoffs	10M	3	3
	(Pruning) is applied on multi-player games			
Q.5(A)	"As per the law, it is a crime for an American to sell weapons to hostile	10M	4	5
	nations. Country A, an enemy of America, has some missiles, and all the			
	missiles were sold to it by Robert, who is an American citizen." Construct			
	FOL and Prove that "Robert is criminal" using resolutions.			

OR

Q.5(B)	Describe the process of resolution, including the use of clauses and resolution steps.	10M	4	2
Q.6(A)	Briefly explain the ABSTRIPS approach of problem solving?	10M	5	2
	OR			
Q.6(B)	Write brief notes about reasoning done using Fuzzy logic.	10M	5	2
	*** END***			

Hall Ticket No:										C	Question Paper Code: 20CAI105 / 20CSD105
-----------------	--	--	--	--	--	--	--	--	--	---	--

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

OBJECT ORIENTED PROGRAMMING - JAVA

(CSE (Artificial Intelligence) and CSE (Data Science))

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. Differentiate between class and object.	1M	1	2
54	ii. Why Java is not a purely Object-Oriented Language?	1M	1	3
	iii. Differentiate between interface to abstract class	1M	2	2
	iv What is inheritance? Give example.	1M	2	1
	v. List out Java's built in exceptions.	1M	3	1
	vi Write a short note on life cycle of thread.	1M	3	1
	vii. What is Tree set?	1M	4	1
	viii. Differentiate between Byte Stream Classes and Character Stream Classes.	1M	4	2
	ix. What are the limitations of AWT?	1M	5	1
g.	x. What are the various event sources in swing?	1M	5	1
Q.2(A)	Elaborate the main principles of OOPS.	10M	1	2
	OR			
Q.2(B)	Elaborate the process of Method and Constructor Overloading with examples.	10M	1	2.
Q.3(A)	Illustrate inheritance concept with an example.		2.	2
	OR			
Q.3(B)	How can we add a class to a package? Write about relative and absolute	10M	2	3
	paths.	-	WAR MITTER	
Q.4(A)	Demonstrate the concept of thread synchronization with an example.	10M	3	2
	OR			
Q.4(B)	Illustrate exception handling in the case of division by zero.	10M	3	3
Q.5(A)	Discuss in detail about Hierarchy of collection framework.	10M	4	2
	OR			
Q.5(B)	Write a program for file manipulation and discuss about the byte stream	10M	4	2.
	classes and methods.			
Q.6(A)	Explain in detail about Event Handlers.	10M	5	2
	OR			
Q.6(B)	Create a simple applet to display a smiley picture using Graphics class methods.	10M	5	2
	menega.			

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular& Supplementary End Semester Examinations, February - 2023

DATABASE FUNDAMENTALS FOR SECURITY

(Computer Science & Engineering (Cyber Security))

Time: 3Hrs

Max Marks: 60

Attempt all the questions. All parts of the question must be answered in one place only.

All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only

Q.No		Question	Marks	CO	BL
Q.1	i.	What is the need of DBMS?	1M	1	1
	ii.	List the DDL Commands.	1M	1	1.
	iii.	Define Functional Dependency?	1M	2	1
	iv	What is Multi-Valued Functional Dependency?	1M	2	1
	٧.	What is Concurrency control in DBMS?	1M	3	1
	vi	Define Exclusive lock.	1M	3	1
	vii.	Define Access control.	1M	4	1.
	viii.	What is the need of Security in DBMS?	1M	4	1.
	ix.	What is Database Auditing?	1M	5	1
	Χ.	What is water Marking?	1M	5	1
Q.2(A)	Writ	e SQL Statements for following:	10M	1	5

Student (Roll no, name, course_id, e-mail id, phone_no)

Course (course id, course name, duration)

- i) Add a column city in student table.
- ii) Find out List of students who have enrolled in "Computer" course.
- iii) List name of all students starts with 'a'.
- iv) List e-mail id and phone no of all mechanical engineering students.
- v) Apply insert, update, delete commands on student table.

OR

Q.2(B)	What is Entity set? And also define Relationship set. List and explain the symbols used to draw ER Diagram with example.	10M	1.	3
Q.3(A)	Explain in detail about Hashing and types of Hashing?	10M	2.	2
65	OR			
Q.3(B)	Explain the following:	10M	2	2
	i) Primary key		2	
	ii) super key			
	iii) Candidate key, foreign key with syntax and examples?			
Q.4(A)	Define a Transaction. List and explain desirable properties of	10M	3	1
	Transaction.			
	OR			
Q.4(B)	What are LOCK & its types along with detail about the two-phase locking	10M	3	1
2	protocol?			

Q.5(A)	Discuss Grant and Revoke on Views and Integrity Constraints OR	10M	4	2
Q.5(B)	Explain the following: i) Authorization and access control ii) SQL Injection	10M	4	1
Q.6(A)	Explain in detail about Virtual Private Databases. OR	10M	5	2
Q.6(B)	Discuss in details about Multilevel Secure Relational model?	10M	5	2
	*** END***			

Hall Ticket No:	Question Paper Code: 20CSC103
-----------------	-------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

COMPUTER SYSTEM ARCHITECTURE

(Computer Science & Engineering (Cyber Security))

Time: 3Hrs Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. Draw the block diagram of 4x1 multiplexer?	1M	1	1
	ii. Outline the block diagram of 2-4 and 3-8 decoders?	1M	1	1
	iii. Explain the need of data transfer and manipulation?	1M	2	2
	iv Extract decimal equivalent of 1001110?	1M	2	2
	v. Define Addressing Mode?	1M	3	1
	vi Explain the characteristics of RISC?	1M	3	2.
	vii. Define the operations of Array Processors?	1M	4	1
	viii. list advantages and disadvantages of parallel processing?	1M	4	1
	ix. Describe volatile and non volatile memories?	1M	5	2.
become a first many	x. Describe Cache memory principles?	1M	5	2.
Q.2(A)	Solve the given function $F(w, x, y,z)=\sum m(0,3,4,5,8,11,12,13,14,15)$. List all	10M	1	3
	Prime Implicants and find the minimum product of sum expression?			
	OR			
Q.2(B)	Solve the given function $F(A,B,C,D)=\sum 0,2,4,5,6,7,8,10,13,15$ using 4-	10M	1	3
0,2(0)	variable K-Map?	THE REAL PROPERTY.	ZNIC NICONO	en en en
Q.3(A)	Describe the algorithm for addition and subtraction operations using	10M	2	2
	signed 2's complement representation?			
30.0	OR			
Q.3(B)	Demonstrate Booth's Multiplication Algorithm?	10M	2	3
Province and a series			*****	-
Q.4(A)	Demonstrate ARM and x86 addressing modes?	10M	3	3
	OR			
Q.4(B)	Describe Register organization in detail?	10M	3	2.
0.5(4)		1004	4	N ₁
Q.5(A)	Explain Arithmetic pipelining concept in detail with suitable example?	10M	4	2
5	OR OR			
Q.5(B)	Explain FLYNN's Classification?	10M	4	2
Q.6(A)	Classify Associative mapping and Set Associative Mechanism?	10M	5	2
-5-7	OR		_	
Q.6(B)	Demonstrate Memory Hierarchy system?	10M	5	3
~. 0(5)		~~!!!	J	
	*** END***			

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February/March - 2023

OBJECT ORIENTED PROGRAMMING USING C++

(Computer Science & Engineering (Cyber Security))

Time: 3Hrs Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. What is an encapsulation?	1M	1	1
	ii. List out features of OOPS.	1M	1	2.
	iii. Define friend function.	1M	2	1.
	iv What is overriding.	1M	2	1
74	v. Differentiate between static and dynamic binding.	1M	3	3
	vi What is pure virtual function in C++?	1M	3	1
	vii. What is a stream?	1M	4	1
	viii. List out the different file modes in C++.	1M	4	1
	ix. What is an exception?	1M	5	1
	x. What is the need for template functions in C++? What are their advantages?	1M	5	1
Q.2(A)	(i) Compare break and continue keyword in C++ with suitable program.	5M	1	4
187	(ii) Write a C++ program that outputs a complete multiplication table of any integer number.	5M	1	3
	OR			
Q.2(B)	What is the need of data types in C++? Describe different data types along with their representations and size in C++.	10M	1	2
Q.3(A)	What is function overloading? Explain with an example program.	10M	2	2.
	OR			
Q.3(B)	Explain in detail about different of types of Constructor with example.	10M	2	
Q.4(A)	What is virtual functions? Explain their needs using a suitable example. What are the rules associated with virtual functions? OR	10M	3	4
Q.4(B)	With suitable example explain how the polymorphism is achieved at compile time and run time.	10M	3	e e e e e e
Q.5(A)	Write a C++ program to copy the contents of one file to another file.	10M	4	
	OR			
Q.5(B)	Discuss on file stream classes with a suitable example	10M	4	
Q.6(A)	Write down a detailed C++ program to demonstrate the use of try, catch and throw	10M	5	
	OR OR			
Q.6(B)	Explain with example, how Function Templates are implemented?	10M	5	
	*** END***			

Hall Ticket No:											Question Paper Code: 20CSC104
-----------------	--	--	--	--	--	--	--	--	--	--	-------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular & Supplementary End Semester Examinations, February - 2023

DATA STRUCTURES USING PYTHON

(Computer Science & Engineering (Cyber Security))

Time: 3Hrs

Max Marks: 60

Attempt all the questions. All parts of the question must be answered in one place only.

All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only

Q.No	Question	Marks	CO	BL
Q.1	i. Define data structure.	1M	1	1
	ii. Write about Iterator ADT.	1M	1	1
	iii. Explain the complexity analysis of a algorithm.	1M	2	2.
	iv Write about Set ADT.	1M	2	1
	v. Define stack.	1M	3	.1
	vi Write about priority queue.	1M	3	1
	vii. Explain Circularly Linked List.	1M	4	2.
	viii. Define Recursion.	1M	4	3.
	ix. Define binary tree.	1M	5	1
	x. Explain how the balance factor is calculated for a node?	1M	5	1
Q.2(A)	Explain the usage of Date and Bag ADT with its modules. Explain Date ADT	10M	1	2.
	with an example program.			
	OR			
Q.2(B)	Discuss about Map ADT in detail with an example program.	10M	1	2
-		4004		
Q.3(A)	Explain how complexity analysis will be done for an algorithm and explain	10M	2.	2
	evaluation procedure of python Lists considering an example program.			
0.2(0)	OR	1014	2	1
Q.3(B)	Memorize the working method of insertion sort and write a program for	10M	2	1.
-	selection sort.	-	9080A041	process services
Q.4(A)	Explain Bag ADT using Singly Linked List and write a program for Bag using	10M	3	2
	Singly Linked List.			
₩	OR			
Q.4(B)	Explain how Queue ADT is implemented using List. Explain it with an example	10M	3	2
	program.		announce process	· · · · ·
Q.5(A)	Discuss how multi-linked list are useful in attaching multiple nodes for a single	10M	4	2
	node.			
	OR			
Q.5(B)	Determine how Hashing is efficient in searching? Justify with your answer and	10M	4	4
	explain it with a hashing program.			
Q.6(A)	Illustrate the working principle of Quick sort and write a program for Quick	10M	5	3
9	sort.			
	OR			
Q.6(B)	Explain working principle of AVL tree by considering an appropriate example.	10M	5	4

Hall Ticket No:						Question Paper Code: 20CSO104

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Supplementary End Semester Examinations, February - 2023

ANALOG & DIGITAL ELECTRONICS

(Computer Science & Engineering (Internet of Things))

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. Define stability factor for Bipolar Junction transistor.	1M	1	1
	ii. Draw the Hybrid model for CE- Bipolar Junction Transistor.	1M	1	2
	iii. Write the relationship between drain current and Gate to source voltage in JFET.	1M	2	1
	iv What are the values of dc characteristics of ideal Operational Amplifier?	1M	2	1
	v. What is meant by resolution of 8 bit DAC?	1M	3	1
	vi Draw the truth table for EX -OR gate.	1M	3	2
	vii. Simplify Y (A, B, C) = $\sum m (1, 3, 5, 7)$.	1M	4	1
	viii. Compare decoder and demultiplexer	1M	4	3
	ix. What is difference between latch and flip-flop?	1M	5	1
	x. What is a flip flip?	1M	5	1
Q.2(A)	i) Explain the operation of TUNNEL diode under forward condition and hence draw its V-I characteristics.	5M	1	2
	ii) Explain the voltage divider bias for CE- Bipolar Junction Transistor and hence derive stability factor and operation quiescent point. OR	5M	1	2
	 i) Explain the input and output characteristics of CE- Bipolar Junction Transistor and compare its characteristics, applications with CE and CC. ii) Compute the values of collector current(Ic), Collector to emitter voltage (Vce) and stability factor for the fixed bias – CE- Bipolar Junction 		1	2
	transistor shown in figure . The current gain is h_{fe} = β = 50.	5M	1	3
Q.2(B)	$\begin{array}{c c} R_{s} \\ R_{s}$.57		

X			-	-	-
Q.3(A)	i) Explain about gain control of Instrumentation amplifier using 3 op amp.	5M	2	2	
	ii) Explain Junction Field Effect Transistor parameters and hence write the				
	relationship between drain current and Gate to Source voltage.	5M	2	2	

Q.3(B)	i) Explain the operation of depletion MOSFET and hence draw its drain and	5M	2	2
Q.5(b)	transfer characteristics.	3111	-	_
	ii) Explain the following dc characteristics of Operational amplifier.	5M	2	2
Q.4(A)	i)What output voltage would be produced by a D/A converter whose ouput range is 0 to 10V and whose input binary number is	4M	3	3
	1. 10(for a 2bit D/A converter) 2.0110(for a 4 bit DAC) 3.10111100(for a 8 bit DAC)	- 1		
	3.10111100(for a 8 bit DAC)ii) Explain the operation of Successive approximation.OR	6M	3	2
Q.4(B)	i) Explain the TTL logic in detail along with its types.	5M	3	2
-(-/	ii)State and verify De Morgan Laws.	5M	3	2
Q.5(A)	Express the following function in sum of minterms and product of max terms f(A,B,C,D)=B'D+A'D+BD	10M	4	4
	OR			
Q.5(B)	Implement the following Boolean function F no more than two NOR gatesF=(A,B.C,D)= \sum (0,1,2,9,11)+d(8,10,14,15)	10M	4	4
Q.6(A)	Explain detail about different shift resisters.	10M	5	2
	OR			
Q.6(B)	Explain the operation involved using RAM and compare static RAM and Dynamic RAM. *** END***	10M	5	2

Hall Ticket No: Question Paper Code: 200
--

(UGC-AUTONOMOUS)

B.Tech II Year I Semester (R20) Regular End Semester Examinations, February- 2023

DATA STRUCTURES AND ALGORITHMS

(Computer Science & Engineering (IoT))

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	СО	BL					
Q.1	i. Identify the data structure suitable to store file system in a	1M	1	3					
	computer								
	ii. What is the time complexity of Linear Search method?	1M	1	1					
	iii. Name any two applications of stacks	1M	2	1					
	iv Justify the statement, "Queues are used in CPU scheduling"	1M	2.	5					
	v. What is a complete binary tree?	1M	3	1					
	vi Construct a MaxHeap from the elements {4, 10, 3, 5, 1}	1M	3	3					
	vii. Determine the time complexity of inserting the elements {12, 13, 14, 15, 16} into a hash table of size 10.	1M	4	5					
	viii. List the order of nodes that get visited when Depth First Search starts with vertex 1	1M	4	5					
,	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c								
	ix. Give any three applications of Pattern Matching?	1M	5	1					
ŧ	x. How many unique colors are required for proper vertex coloring of a complete graph that has 10 vertices?	1M	5	3					
Q.2(A)	What is an Algorithm? How does one determine the efficiency of an algorithm? Explain various Asymptotic notations OR	10M	1	2.					
Q.2(B)	Write an algorithm for finding the penultimate node in a singly linked 10M 1 list where the last element is indicated by a null <i>next</i> pointer								
Q.3(A)	Explain the process of evaluating a post-fix expression (5 3 + 8 2 - *) 10M using stack and write an algorithm.								
Q.3(B)	OR What is double-ended queue? Explain various operations performed on 10M 2 2 dequeues								
Q.4(A)	What is a Heap? Write an algorithm to insert an element into a MaxHeap	10M	3	2					
Q.4(B)	OR Analyze the time complexities of insertion, deletion and search operations of a Binary Search Tree	10M	3	4					

Q.5(A)	What is collision? Explain various collision resolution techniques OR	10M	4	2					
Q.5(B)	What is a weighted graph? Give the adjacency matrix representation of a weighted graph	10M	4	2					
Q.6(A)	What is the importance of pattern matching in search engines? Briefly explain how Google works?	10M	5	5					
	OR								
Q.6(B)	Explain how backtracking addresses N-Queen's problem	10M	5	2					
*** END***									

Hall Ticket No:					C	uestion Paper Code: 20CSO106

(UGC-AUTONOMOUS)

B. Tech II Year I Semester (R20) Supplementary End Semester Examinations, February - 2023

OBJECT ORIENTED PROGRAMMING – JAVA

(Computer Science & Engineering (IoT))

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL				
Q.1	i. Differentiate between class and object.	1M	1	2				
	ii. Why Java is not a purely Object-Oriented Language?	1M	1	3				
	iii. Differentiate between interface to abstract class	1M	2	2.				
	iv What is inheritance? Give example.	1M	2	1.				
	v. List out Java's built in exceptions.	1M	3	1				
	vi Write a short note on life cycle of thread.	1M	3	1				
	vii. What is Tree set?	'1M	4	1				
	viii, Differentiate between Byte Stream Classes and Character Strea Classes.	m 1M	4	2				
	ix. What are the limitations of AWT?	1M	5	1				
	x. What are the various event sources in swing?	1M	5	1				
Q.2(A)	Elaborate the main principles of OOPS.	10M	1	2				
Q.2(B)	OR Elaborate the process of Method and Constructor Overloading with 10M examples.							
Q.3(A)	Illustrate inheritance concept with an example.	THE RESERVE OF THE PARTY OF THE	2	2.				
	OR							
Q.3(B)	How can we add a class to a package? Write about relative and absolupaths.	te 10M	2	3				
Q.4(A)	Demonstrate the concept of thread synchronization with an example.	10M	3	2				
	OR							
Q.4(B)	Illustrate exception handling in the case of division by zero.							
Q.5(A)	Discuss in detail about Hierarchy of collection framework.	10M	4	2				
	OR							
Q.5(B)	Write a program for file manipulation and discuss about the byte strea classes and methods.	m 10M	4	2.				
Q.6(A)	Explain in detail about Event Handlers.	10M	5	2				
	OR							
Q.6(B)	Create a simple applet to display a smiley picture using Graphics clamethods.	ss 10M	5	2				
	*** [N] ***							